If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-12x+1=0.
a = 2; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·2·1
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{34}}{2*2}=\frac{12-2\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{34}}{2*2}=\frac{12+2\sqrt{34}}{4} $
| (D2+-2D+5)*y=0 | | 294=108-v | | -5(x-19)=-75 | | 55+90=x+43 | | 3(3-3r)=2(r+3)-30 | | 53+8x+4=16x-7 | | 3x-17/3x-7=11 | | 17x-1+15x+5=180 | | 3x=27,x | | 12.3-0.4x=0.1x+6.1 | | 79+x=105 | | (x+12)(x+3)+(5x-6)=180 | | X/5=3,x | | 79x=105 | | X+4=11,x | | t^2+8t+2=22 | | X-3=7,x | | x*4/7=64 | | 5(x-6)+8=7x=10 | | 4x-5=11,x | | 3x+8=17,x | | X/2+1=11,x | | 6x^2+24x-537.6=0 | | X/3-1=2,x | | x2−8x−105=0 | | -5=11-2(x+4) | | 2x=x+7,x | | P^2=8p-35 | | -2/5+7/3x-1=x/6+7/5 | | 3x=8-x,x | | -9.0=2.5+4(x+3) | | 9y-17y+8=0 |